If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=5Y^2+10Y
We move all terms to the left:
-(5Y^2+10Y)=0
We get rid of parentheses
-5Y^2-10Y=0
a = -5; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·(-5)·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*-5}=\frac{0}{-10} =0 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*-5}=\frac{20}{-10} =-2 $
| 0=5r(r+2r) | | 6x-21=2x+27 | | 1/5*1/5*1/5*1/5=x | | 2x+26=5x-16 | | 0=77,954+7.32x | | 3(0)-10y=-20 | | 3x-10(0)=-20 | | $30+2/9x=$10 | | 2(4x+4)=1+8(x-2) | | x(x+10)=56 | | 5x-12(0)=-60 | | 5(0)-12y=-60 | | 100x3-8=315 | | 1-y=(3y-19)/5 | | 1-y=3y-19/5 | | (z-7)^(2/3)=5 | | -3x+2=15x-22 | | 2(0)-11y=22 | | y=5(-4)-4 | | 2-3(4x+3)+4(6x+1)=45 | | -1=7x-1 | | 7y=13+136/59 | | y=7(-1)-1 | | 6.9(r-3)=33r-27.9 | | y=8(-3)-2 | | 5x+3=-3x-21 | | $42510=x+0.09x | | 5x-3x+7-11=-3(-2x-4) | | -3=8x-2 | | -5y+11=-8-16 | | x-10=-45 | | -30=-2(3x-3) |